Zirconium ntride is a hard ceramic material similar to titanium nitride

If you are looking for high-quality products, please feel free to contact us and send an inquiry, email: brad@ihpa.net



What’s zirconium-nitride? ZrN, zirconium-nitride, has excellent corrosion resistance and high hardness. It is an attractive coating due to these properties. It is applied using physical vapor despatch. You can choose from a beautiful yellow or crystalline coating.

Physical and chemical properties include a density of 7.09, microhardness approximately 980019600MPa and a melting point of 29880 (plus or minus 50 degrees Celsius). Zirconium nutride is not soluble or soluble at all in water. However, it can be dissolved in hydrofluoric and concentrated sulfuric acids. Due to its many properties, Zirconium Nitride (ZrN), can be used in many different ways.

ZrN is slightly golden when grown via physical vapor deposit (PVD). It’s similar to elemental or metallic gold. ZrN’s room temperature resistivity is 12.0mO*cm. It has a temperature coefficient of resistance of 5.6*10-8O*cm/K. It also has superconducting transitiontemperature of 10.4K. And the relaxation lattice parameter of 0.4575nm. ZrN, single-crystal ZrN has a hardness of 22.7+-1.7 GPa. The elastic modulus is 450 GPa.
What’s the purpose of zirconium-nitride
Zirconium-nitride, a hard ceramic similar to titan nitride, is also a cement-like material and a refractory. This makes it suitable for laboratory crucibles as well as cermets and refractory materials. It is often used in coatings such as medical equipment and parts of the aerospace, automotive, and aviation industries. Al is alloyed with cubic ZrN, and the electronic structure results from this local octahedral-bond symmetry. The Al content will increase, and the symmetry of cubic ZrN becomes more complex.
As a hydrogen-peroxide fuel tank liner for aircrafts or rockets, zirconium nutride should be used.

Zirconium-nitride compounds (ZrN), have crystal structures that change with their composition. The ZrN, Zr3N4 or c-Zr3N4 alloy compounds have been identified in Zr-N’s Zr-N system. Not only do they have great chemical properties, but they can also be used to make junctions, diffusion lams, and other low-temperature instruments. they can be used to make integrated three-dimensional electric coils or metal-based transistors. In addition, ZrN compounds have superior wear resistance as well as oxidation and corrosion resistance.

Making zirconium-nitride powder
Direct nitridation with Zr, nitrogen, high-energy reactive balls milling (RBM), microwave radiation method, aluminum reduction (ZrO2), magnesium thermal reduce, carbothermal reduction (CRN), direct carbon thermal (CN) and direct zircon thermal nitriding (ZrO 2 and zircon, as well as other CRN or CN processes, are the main methods for synthesising zirconium. You can use these routes to produce different size and morphologies of particles. You can mass produce zirconium trioxide or other transition metal nitrides by using fibers, microspheres as well as membranes, blocks, and also have the option of manufacturing them in large quantities. Due to the formation of solid solution within the ZrNZrC–’ZrO” systems, the end product nitriding is typically represented by Zr (N.C., O). A CRN process Requires two-step heat treatment. As an intermediate, Zirconium Carbide (ZrC), which is then made into Nitride, must be used. The CN procedure is the direct nitridation ZrO2 in presence of carbon. This requires only one heat treatment. In preparing zirconium nutride powder, the latter is likely to be faster and more cost-efficient.

In oxygen reduction, zirconium Nitride catalyst is superior to platinum
Materials made of platinum (Pt) are an essential part of microelectronics sensors, anticancer drugs and automobile catalytic convertors. While Pt is currently used most frequently in oxygen reduction (ORR), in fuel cells or metal-air battery, its scaleability and cost are limited. This paper shows that nano-particle zirconium (ZrN), which can also be used to catalyze ORR in alkaline environment, is able to replace and even surpass Pt. The ZrN nanoparticles are synthesized from carbon-supported platinum (Pt/C). They have similar activity to the Pt/C catalyst. The half-wave power of both materials is the same (E1/2 = 0.80 V), after 1000 ORR cycles. ZrN also has higher stability than Pt/C catalysts (DE1/2 than =-3 mV; DE1/2 =-3 mV). KOH is 0.01 M. ZrN is also more efficient than Pt/C when used in zinc-air battery batteries. ZrN is a cost-saving option that can replace Pt/C. ZrN also has a higher power density and cycle capability than Pt/C. ZrN might be helpful in other catalytic methods.
Photoluminescence enhanced with zirconium oxide nanoparticles.
Due to their good optical properties in plasma technology, noble metals such as gold are routinely employed. The melting point of gold is extremely low. This is especially true for nanoscale. Also, there is a low amount of gold within the Earth’s crust. The material limitations prevent the exploration of the potential use of plasmons for multiple purposes. These plasmons are promising substitutes for metals because they have excellent mechanical and thermal stability as well as acceptable plasma characteristics in visible spectrum. Zirconium-nitride is an attractive alternative to titanium nitride. In fact, its carrier density exceeds that of TiN. Additionally, titanium nitride is considered the most researched gold supplementary material. This study uncovered that a ZrN-nanoparticle periodic array could enhance the luminescence of organic dyes. The intensity of photoluminescence increased 9.7 times in visible light. These experiments proved that ZrN could be used to develop and improve plasmons as well as to overcome limitations inherent in gold.

Buffalotours (aka. Buffalotours (aka. Our company currently has a number of products. Our company produces zirconium Nitride powder with high purity, small particle sizes and low impurities. To get the product you are looking for, send an email to us or click on it. Send an inquiry .


Inquiry us
Tagged , . Bookmark the permalink.

Comments are closed.